
D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 1 (12)

GRAPPLE
D1.2b Version: 1.1

Resource Selector Implementation

Document Type Deliverable

Editor(s): Kees van der Sluijs (TUE)

Author(s): Paul De Bra (TUE), David Smits (TUE), Kees van der Sluijs (TUE),

 Evgeny Knutov (TUE)

Internal Reviews Riccardo Mazza (USI), Cord Hockemeyer (UniGraz)

Work Package: 1

Due Date: 01-11-2009

Version: 1.1

Version Date: 20-01-2010

Total number of pages: 12

Abstract: This deliverable describes the “translation” from concepts to resources in GRAPPLE. Access to
information, activities, tasks, etc. is done through concepts. Each concept may be linked with a number of
concrete resources (files, pages, queries to repositories or anything else that can be addressed through a
URI). Based on user model properties a runtime selection of a resource or query is made.

Through the use of resource selection we can achieve different types of content authoring: page-based,
template-based and fully generated. Examples illustrate the differences between these approaches.

Keyword list: Resource Selector, GAL, GALE

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 2 (12)

Summary
This deliverable describes the “translation” from concepts to resources in GRAPPLE. Access to information,
activities, tasks, etc. is done through concepts. Each concept may be linked with a number of concrete
resources (files, pages, queries to repositories or anything else that can be addressed through a URI).
Based on user model properties a runtime selection of a resource or query is made. This is what the AHAM
reference model [1] calls the page selector. In particular we show how this page selection process is
executed by the GALE engine (described in deliverable D1.3a) and how it can be specified in the GAL
language (described in deliverable D1.1a and D1.1b).

Authors

Person Email Partner code

Paul De Bra debra@win.tue.nl TUE

David Smits d.smits@tue.nl TUE

Evgeny Knutov e.knutov@tue.nl TUE

Kees van der Sluijs k.a.m.sluijs@tue.nl TUE

Table of Contents

AUTHORS ... 2

TABLES AND FIGURES... ERROR! BOOKMARK NOT DEFINED.

1 INTRODUCTION .. 4

2 CONCEPTS AND RESOURCES IN GRAPPLE .. 5

2.1 Concept to Resource translation in GALE ... 5

2.2 Concept to Resource Translation ... 7

2.2.1 Resource Selection through the Domain Model .. 8

2.2.2 Resource Selection through Concept Relationships ... 8

2.2.3 Recursive “Page Selection” ... 9

2.3 Conditional Inclusion of Objects and Fragments .. 9

2.3.1 Conditional Inclusion using “data” ... 10

2.3.2 Conditional Inclusion using “name” ... 10

2.4 The GAL Language ... 10

REFERENCES .. 12

List of Figures

Figure 1: Taxonomy of adaptation techniques in hypermedia ... 4

Figure 2: Resource Selection in AHA! 3’s Graph Author ... 6

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 3 (12)

List of Acronyms and Abbreviations

AHA! (or AHA) Adaptive Hypermedia Architecture (also used as prefix for other terms)

ALE Adaptive Learning Environment

CAM Conceptual Adaptation Model

AM Adaptation Model

DM Domain Model (this includes the Adaptation Model)

GRAPPLE Generic Responsive Adaptive Personalized Learning Environment

LMS Learning Management System

SOAP Simple Object Access Protocol

UM User Model

URI Uniform Resource Identifier

URL Uniform Resource Locator

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 4 (12)

1 Introduction

Adaptive systems that deliver information (this includes adaptive hypermedia, recommender systems,
information filtering, simulations, and to some extent even gaming) present their information in units at a
time. Typical units are pages or objects (to be included in pages). The design of an adaptive application
however is done in terms of (abstract) concepts, not in concrete information fragments. This deliverable
explains how in GRAPPLE we make the link between concepts and resources (which can be pages,
fragments, objects, or any other information unit that can be addressed or retrieved by querying some
repository).

Figure 1 below shows a recent taxonomy of adaptation techniques in hypermedia [6], which is an update and
extension of the taxonomies presented in [3] and [4]. The major difference between the new and old
taxonomies is that “cosmetic” adaptation techniques (adaptive presentation) have been separated from
techniques that really change the information content and the navigation possibilities. Connecting concepts
with resources is only concerned with the “real” adaptation, thus the content adaptation and adaptive
navigation techniques shown in the figure. (In the figure different types of arrows are used just to improve
readability.)

Content

Adaptation

Techniques

(Canned Text,

Multimedia)

Inserting/removing

fragments

Altering Fragments

Stretchtext

Sorting

Fragments

Dimming

Fragments

Zoom/Scale

Adaptive

Navigation

Tachniques

Guidance

Link Sorting/

Ordering

Link Hiding

Link Annotation

Combinatorial

techniques

Link Generation

Direct (Local) Guidance

Global Guidance

Hiding

Removal

Disabling

Contextual links

Non-contextual links

Contents, Index links

Local and Global Maps

Adaptive

Presentation

Techniques
Layout

Partitioning/zooming

Rearrangement

Fitting in a template

Anchor adaptation

Destination adaptation

URL adaptation

Conventional Scaling/

Zooming

Fisheye view

Fragment

summarization

Figure 1: Taxonomy of adaptation techniques in hypermedia

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 5 (12)

The GRAPPLE Adaptive Learning Environment (or GALE) must “find” content for information that is
addressed as concepts. This can happen in two ways: for conditionally inserting fragments in pages, and for
retrieving link destinations. The inserting/removing fragments and the altering fragments techniques require
finding resources (unless the fragments appear in-line on a page), and the link generation, and guidance
techniques may also require a technique that we call destination adaptation (see Figure 1). With this
technique a link that always looks the same (including destination anchor) may lead to a destination (page)
that is adaptively determined. The “translation” from concept to resource (or actually the location or URI of a
resource) can be as simple as one-to-one (no destination selection needed as there is only one), and can be
as complex as posing a query (over the domain and user model) in order to compute or select the most
appropriate resource. (Although often the URI may be an actual location and thus considered to be a URL
we shall consistently use the term URI in this deliverable.)

2 Concepts and Resources in GRAPPLE

There are different possible approaches to linking concepts and resources in adaptive (educational)
hypermedia systems:

• In Interbook [5] links on pages or in a navigation menu refer to content: They link to a fixed section or
page of a course. On the server each page is linked to a number of concepts the page teaches
something about. Links to concepts are also possible. Interbook typically shows a list of background
concepts (prerequisites) and a list of outcome concepts (the concepts the page teaches something
about). Accessing a concept can also be done through a “teach me” button that will generate a list of
pages that (together) provide all the required prerequisite knowledge. Likewise in AHA! version 3 [2]
links can refer to concepts or to resources. Internally AHA! would first translate the URI of a resource
back to the name of the concept and then treat the link as a link to the concept.

• Another approach is to query a learning object repository (or a distributed federation of learning
object repositories, or any other type of database). Such a query results in either a concrete page to
be presented or in a possibly ranked set of results, linking to actual content (pages).

• A third possibility is to have links always refer to a concept, and to let the adaptation engine calculate
which resource to retrieve and present. This follows the approach of the AHAM reference model [1]:
accessing content is performed in two stages: a page selector translates concepts into identities of
resources, and an accessor function retrieves the actual content. It is this approach we follow in
GRAPPLE’s adaptation engine GALE because it is most general. It allows page selection to be as
simple as a one-to-one mapping between a concept and a page (in which case it could also be
reversed to allow direct references to pages) or as complicated as the function of a search engine
returning a ranked list of references to pages.

A key element in the GRAPPLE approach is that we make use of URIs to refer to both concepts and content.
When creating a domain model an author has the option of uniquely identifying each piece of authored
content with a concept. Selecting the appropriate content to be presented for a (higher level) concept can
then completely be determined by the adaptation engine, and completely controlled by the author when
designing the domain model and the conceptual adaptation (represented in the Conceptual Adaptation
Model or CAM). However, it is equally possible to use a URI to express a query, so that when a concept is
associated with a query it is up to the database or repository that handles the query to determine what
content to return. In this case the author is only responsible for writing the query, not for how to answer it.
Because both the input and the output of the page selection process consists of URIs it is possible to create
a multi-stage process where the selection returns URIs that again refer to concepts so that the next page
selection can be performed that may return the URI of a page or again of a concept, … Section 2.2.3
explains this recursive process more clearly.

In Section 2.1 we describe how the GRAPPLE Adaptive Learning Environment GALE (see also deliverable
D1.3a) performs page selection. Section 2.2 shows how these constructs can be expressed in the higher-
level GRAPPLE Adaptation Language GAL (defined in deliverable D1.1a). Details of this section may be
somewhat hard to understand for readers who have not also read deliverables D1.1 and D1.3. It is
recommended to first read these other deliverables.

2.1 Concept to Resource translation in GALE

The translation of concepts to resources in GALE is inspired by AHA! version 3, but is much more generic. In
AHA! every concept could be associated with a list of condition-URI pairs. The figure below shows a screen
shot of the GUI element in AHA!’s Graph Author tool to define such condition-URI pairs.

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 6 (12)

Figure 2: Resource Selection in AHA! 3’s Graph Author

The condition (entered in the „Expression“ field) is associated with a value for an attribute „showability“.
When the concept is accessed the expressions are evaluated to set the correct value of „showability“, which
is then used to select the appropriate URI. The Graph Author shields this implementation detail from the
authors. An author simply writes condition-URI pairs.

In GALE we will keep the authoring simplicity through the authoring tools, while at the same time creating a
more generic implementation. To this end the GALE engine uses the following approach:

• Requests for information that need to result in user model updates must be done through concepts.
(It is possible to request resources directly, as done for instance to include fixed presentation
elements like images, headers and footers, but these requests do not trigger any UM updates.
Resources that are requested (and included) directly can still be adaptive, as may be done in a
header for instance.)

• Each concept has a „resource“ attribute that holds the URI of the resource currently associated with
the concept (for the current user).

1
 When there is a one-to-one relationship between a concept and

resource this is all that is needed.

• Like for any other attribute of GALE concepts the “resource” attribute also has a “default” expression.
Default expressions can either indicate a value or an expression to be evaluated to initialize the
attribute, or can be used to compute the attribute value each time it is needed, in case of volatile
attributes (of which the value is not stored in UM). The syntax of such expressions is explained in
deliverable D1.3b. GALE expressions are Java expressions in which one can refer to user model
attribute values.

As an example, consider a course that is called “tutorial”. It has a concept called “welcome” that can refer to
two different pages: one for first-time visitors (say “readme.xhtml”) and one for repeat visitors (say
“welcome.xhtml). The “default” expression for the “resource” attribute of the concept tutorial.welcome should
then be something like:

(${#visited}==1?”gale:/tutorial/readme.xhtml”:”gale:/tutorial/welcome.xhtml”)

In this example we see the reference to ${#visited} which results in the value of the “visited” attribute of
the current concept (for the current user). We assume here that the adaptation rules will ensure that “visited”
represents the number of previous visits to the concept + 1 for the current visit. If the concept has not been
visited before (${#visited}==1 in that case) the result is that the readme.xhtml file will be displayed,
otherwise the welcome.xhtml file will be displayed.

Any Java expression can be used here, including expressions using shorthand code to refer to UM
information as explained in D1.3b, and including expressions with method calls. The expression must return

1
 So each concept is addressed using a URI, but with the concept a resource is associated that also has a

URI. The URI of the concept is fixed. The URI of the resource can be change through adaptation rules as it
is stored in an “attribute” and is thus part of the user model.

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 7 (12)

a string that can be interpreted as a URI. It is thus possible to extend GALE with modules that perform
complex computations over the user model in order to decide which URI to associate with a concept. (This
can be useful for some applications that wish to perform a page selection process that cannot be described
in simple terms through the authoring tools that are currently being designed for GRAPPLE, or that cannot
be expressed in the expression language used in CRT code. This expression language is described in detail
in D1.1b but is used in examples in this deliverable as well.

After the URI of the resource has been determined the GALE engine can start its real work (retrieving the
resource and adapting the page). The retrieved and adapted resource is eventually returned to the browser.
(See D1.3b for details on the adaptation process.) The browser only knows and shows the URI of the
concept. The GALE engine knows the URI of the retrieved resource but this URI remains hidden from the
user. In the browser it looks as if the presented content is a page with as URI the URI of the requested
concept. As a result, on the page all relative links to (other) concepts simply work without having to do any
manipulations to the URIs.

Because in GALE all requests refer to concepts using URIs and because the requests for content are
initiated from GALE using URIs it is possible to have the computed or selected URI refer to concepts as well
as pages. It is thus possible to have a concept that refers to a chapter-concept associated with a list of
section-concepts from which the engine conditionally selects one. When the section is requested this is a
new (HTTP) request to GALE that will call up the default expression associated with the section. This may
result in selecting a page from a list of pages associated with the section. It is thus possible to traverse down
the concept hierarchy, or to implement a „next“ button (or a „teach me“ button like in Interbook [5]) that
invokes a decision process to determine which page to show next. Note however that each of these requests
for traversing the concept hierarchy is an “access event” and may thus cause UM updates.

Likewise an author can write pages (of a course) that contain conditionally included objects. The process for
deciding which content to show for an object (that refers to a concept) is identical to the process for deciding
on link destinations. Conditionally included objects (e.g. using the <object> tag in xhtml) cause the browser
to generate HTTP requests and thus generate an event that may cause UM updates. We explain object
inclusion in Section 2.3.

Because GALE allows the use of arbitrary Java expressions (including method calls) it is possible to
implement the most complex decision processes for linking concepts to resources. However, in practice,
using GRAPPLE’s authoring tools and intermediate adaptation language GAL the selection will consist of
simple expressions that are easy for authors to understand and create.

2.2 Concept to Resource Translation

GRAPPLE allows multiple “resources” to be associated with a concept. The DM editor (see D3.1b) offers the
following interface for adding a resource to a concept:

Figure 3: Adding a Resource to a Concept in the DM editor

Each resource has a URI, which can be an absolute or relative reference to a file or a concept. With each
resource the DM author can associate an arbitrary number of properties. In Figure 3 for instance we have

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 8 (12)

stated that the resource “planet_beginner.xhtml” is associated with the label “beginner”. Although level would
be a more appropriate term here, the GALE compiler uses label as a general-purpose property that is used
to construct selection expressions (see below).

2.2.1 Resource Selection through the Domain Model

GALE checks whether the resources associated with a concept have an “expr” property. If this is the case
the value of the “expr” properties are combined to form a large expression for the “resource” attribute.

As an example we consider a concept “welcome” of an application “tutorial”. For this concept we have a
page “readme.xhtml” that is shown on the first visit, and “welcome.xhtml” shown on subsequent visits. To
achieve this we create a concept “welcome” with two resources:

1. Url: gale:/tutorial/readme.xhtml
Property (name): expr
Value: ${visited}==1

2. Url: gale:/tutorial/welcome.xhtml
Property (name): expr
Value: true

When importing the DM (as part of the CAM, see deliverable D3.3b) GALE will combine both expressions
into an expression that is equivalent to (but not literally the same as):

(${#visited)==1?”gale:/tutorial/readme.xhtml”:”gale:/tutorial/welcome.xhtml”)

Although resource selection through the DM is possible, and useful for simple cases like this example, a
more generic and structured approach is often advisable. The next section shows how to accomplish this.

2.2.2 Resource Selection through Concept Relationships

It is common to have multiple “versions” of the content that corresponds to a concept. The same concept can
for instance be represented by a page for “beginners”, for learners with an “intermediate” level and for
“advanced” or “expert” users. It’s also possible to have a version suitable for a “visual” and one for a “verbal”
cognitive style. In such cases selecting the proper resource is done based on properties that identify the type
or purpose of the resource.

Consider as an example a concept “Planet” having a “beginner”, “intermediate” and “advanced”
representation. The concept should then have three resources:

1. Url: gale:/Milkyway/Planet_beginner.xhtml
Property (name): label
Value: “beginner”

2. Url: gale:/Milkyway/Planet_intermediate.xhtml
Property (name): label
Value: “intermediate”

3. Url: gale:/Milkyway/Planet_advanced.xhtml
Property (name): label
Value: “advanced”

In GALE every concept has one (UM) attribute “resource”. Through the property/value pairs that can be
created in the DM tool the label properties are translated to properties of the “resource” attribute, having as
property name the value. So the above example results in the following properties and values in GALE:

• resource.beginner = gale:/Milkyway/Planet_beginner.xhtml

• resource.intermediate = gale:/Milkyway/Planet_intermediate.xhtml

• resource.advanced = gale:/Milkyway/Planet_advanced.xhtml

These properties of the attribute “resource” can be used in the GALE code of a CRT to perform resource
selection. Suppose that the learner has a proficiency level which is represented as
gale://gale.tue.nl/personal#level then the following code in a unary “resource-selection” CRT
would select a resource that matches the level of the learner:

%self% {

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 9 (12)

#resource

 !`${%self%}.getAttribute("resource").getProperty(

 (${gale://gale.tue.nl/personal#level})`

}

For a user of “advanced” level the expression ${gale://gale.tue.nl/personal#level} results in the

string “advanced”. The method getProperty thus gets as argument “resource.advanced” and it thus

retrieves the value “gale:/Milkyway/Planet_advanced.xhtml”. This value is assigned to the
resource attribute used by GALE to decide which resource to load.

2.2.3 Recursive “Page Selection”

The Url field of a resource is not limited to URLs of actual files such as (xhtml) pages. Any URI that can be
used by GALE to retrieve a resource can be used. Typically the Url will refer to a file that is stored locally on
the server on which GALE is running. It is also possible to retrieve the file from a different server through the
HTTP protocol (by using an http: Url).

An interesting case is when the Url field refers (using HTTP) to a concept rather than a file. The concept may
be from an application running on the same GALE server (either the same application as that of the concept
or a different application or course) or may be a concept from a different GALE server. In the latter case the
access may be seamless or not depending on whether both GALE servers are integrated in the same
GRAPPLE environment, sharing the same single sign-on facility.

When the selected resource is another concept, an HTTP request is sent to the corresponding GALE server.
That server will perform resource selection again, which may result in the URL of a file or in a reference to
yet another concept. It is thus possible to recursively traverse a sequence of concepts before finding a
concept for which the resource selection results in the URL of a file. This recursive process corresponds to
what the AHAM reference model [1] calls “Page Selection”.

Note that when the recursive page selection process traverses concepts on the same GALE server each
access (each step in the process) causes UM updates. When the page is finally presented it will be adapted
according the UM state after all these updates. (All steps in the procedure will be using the same UM cache
instance so there is no danger of an update still being “missing in transfer”.

Note also that there is a potential danger that in the recursive page selection process a concept is revisited
because of a cycle in the concept-to-resource structure. Such a loop cannot be detected by the GAT
authoring environment because it is not caused by a cycle in concept relationships (either in DM or CAM).
Revisiting a concept in the process also need not indicate an infinite loop because the intermediate UM
updates may result in a different resource selection when a concept is revisited. Recursive page selection is
typically done through a hierarchical structure (e.g. of chapters, sections and subsections) and in such cases
the structure has no cycles by definition.

2.3 Conditional Inclusion of Objects and Fragments

In GALE there are three ways to conditionally include objects or fragments of information in a page:

1. An object (possibly a text fragment) can be conditionally included by means of the <gale:object>
tag, with a data attribute. The data attribute refers to a resource to be included. In order to
conditionally choose between different possible resources the value of that attribute must be
“conditional” (see below).

2. An object (possibly a text fragment) can be conditionally included by means of the <gale:object>

tag, with a name attribute. The name attribute refers to a concept. The adaptation rules for that
concept determine which resource is actually included (see below).

3. A fragment can be included in the source (xml or xhtml) text of a page, and only conditionally shown
to the user. This can be done using the <gale:if>, <gale:then> and <gale:else> tags with

an expression (added to the <gale:if> tag) to make the decision on the inclusion. This construct is
simple and most useful for conditional inclusions that occur in a single instance.
When information is conditionally included this way no concept to resource translation is needed and
no (additional) resource is retrieved. Hence we will not elaborate on this case in this deliverable.

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 10 (12)

2.3.1 Conditional Inclusion using “data”

Inclusion of an object by using <gale:object data=”filename” /> is straightforward when the
filename is known and constant. A typical example is when a fixed header is included in all pages. The tag
<gale:object data=”header.xhtml” /> will perform this inclusion.

The situation becomes more interesting when the name of the file needs to be selected from DM. We will first
consider a simple case where the filename is stored in a property. This is the case when a number of
concepts share the same page template in which parts need to be inserted based on properties of the
concept.

In a course about celestial objects we may use a template page “planet_instance_template.xhtml” that is
used for all planets. On this page we wish to include an image of the specific planet (concept) for which the
template is used. Each planet concept can have a property “image” of which the value is the Url of the image
of that planet. The following tags then cause the image to be shown on the page:

<gale:attr-variable name="src" expr="${?image}"/>

Note that we have to use the <gale:attr-variable> tag to instantiate the “src” attribute of the

tag, because we cannot use an xml tag (to retrieve the image URL) inside another xml tag (the tag in
this case).

There are two ways in which we can make this inclusion “conditional”:

1. We can replace the DM property by a UM attribute. The code then becomes:
<gale:attr-variable name="src" expr="${#image}"/>
The name of the image can be changed by GALE through rules that modify the image attribute
value.

2. The expression “${?image}” (or “${#image}”) can be any GALE expression, perhaps selecting
between different resources. An example:
<gale:attr-variable name=”src”

 expr=”${gale://gale.tue.nl/personal#isVerbalizer}?

 ${?smallimage}:${?largeimage}”>
If the “isVerbalizer” attribute is true (the user has the Verbalizer learning style) a small image will be
included whereas users with the Visualizer learning style (isVerbalizer is false) will see a large
image.

2.3.2 Conditional Inclusion using “name”

Inclusion of an object by using <gale:object name=”conceptname” /> causes GALE to look up the
concept (matching the “name” attribute of the tag) and perform resource selection on that concept. As a
result the file that will be included is determined in exactly the same way as in the case of resource selection
for concepts that should present a (whole) page (and which are described in Section 2.2).

When an object is included using <gale:object name=”conceptname” /> this is a concept access and
thus causes UM updates. Because GALE traverses the DOM tree (of the page) in depth first manner, the
part that comes after processing this tag (and request) will be adapted according to the updated user model
whereas the part before the tag was already updated using the “old” user model state and stays that way. It
is thus possible to include the same concept as an object on the same page multiple times and have it result
in different files being included for each occurrence.

2.4 The GAL Language

As described in deliverable D1.1b, GAL no longer is an intermediate language between the CAM and GALE
as originally planned. Instead it is an export language of the GRAPPLE framework that is aimed at
exchanging the specific GALE code with other adaptive frameworks by using a generic, engine neutral,
intermediate language for adaptation. This alteration of the first year’s planning has some practical reasons.
GAL is not part of the Description of Work (DoW). Given that the coupling of CRT’s with GAL code and
translation of that code to pure GAL and then to GALE turned out to be quite complex, we decided to take
GAL away from the critical path of the project. Instead we focused on the core capabilities of the GRAPPLE
system by using a direct translation system, and designed the GAL language as an output language of the
GRAPPLE framework for exchanging with other adaptive frameworks. Implementation of this work is planned
for the third year of the project. In terms of resource selection, GAL did not change from the description in
deliverable D1.1a. The rest of this section cis based on the section in deliverable D1.1a that describes the
resource selection process in GAL.

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 11 (12)

There is no specific construct for resource translation in GAL, but it can be simply done with typical GAL
primitives. GAL Attributes represent literal values shown to the user. This is either text (fragments), or any
URI-referable media types, e.g. pictures, videos or html pages. For concept to resource translation, typically
the URI-referable media types are of importance. For determining which value (URI in the case of resource
translation) an attribute should represent we use a query which refer both to the domain and user model.
Moreover, by using conditions one can choose between different query values.

Let’s look at the previous example in Section 2.1. Consider the course that is called tutorial. It has a concept
called “welcome” that can refer to two different pages: one for first-time visitors (say “readme.xhtml”) and one
for repeat visitors (say “welcome.xhtml). In GAL terms we could write this as a Unit that contains the
following attribute:

 :hasAttribute [
 :if [:query
 “ SELECT ?conceptVisits
 WHERE
 {

 :welcome :visited ?conceptVisits;
 :byuser $CurrentUser;

 :amount ?visits .
 FILTER (?visits > 0)
 }”

] ;
:then[:value “aha:/tutorial/welcome.xhtml”] ;
:else[:value “aha:/tutorial/readme.xhtml”]

]

In this example we see an attribute (:hasAttribute) that has a condition (if-then-else). In the “:if” clause we
defined a query that queries the domain and user model. In this example we used the SPARQL

2
 syntax for

the query, for now assuming that the domain and user modelled are expressed in RDF
3
. Note that this is just

exemplary, other query formalisms and corresponding data models can be used as well in GAL.

The query looks at the concept “:welcome” which has a property “:visited” which points to a node denoted by
the variable “?conceptVisits”. This node is a concept to express the number of visits of concept “welcome” by
the current user. We explicitly model here that the user for which we inspect the number of visits, i.e. the
current user, must be $CurrentUser. The use of the $-sign indicates that this is a GAL variable. Note that the
$-sign is not part of the SPARQL-language but is used by the GAL interpreter to substitute the value of the
variable. Also note that “$CurrentUser” and “$CurrentApplication” are reserved variables that always exist in
every GAL Unit. The variable “?conceptVisits” points to a node which should have a property “:amount”
which should indicate the number of visits of the particular concept for this particular user. The variable
“?visits” points to the number of visits by the user. In the FILTER clause it is then specified that we only
include “?conceptVisits” if the number of visits is more than 0, so in case the user already visited the concept
before.

If this query yields any results (i.e. user “$CurrentUser” did already visit concept “:welcome”) we execute the
“:then” clause and show the user the “welcome.xhtml” page. If user “$CurrentUser” is new, the else clause is
executed and the user is shown the “readme.xhtml” page.

We could also use an example in which the resource can be directly found in the domain model, e.g.:

:hasAttribute [
 :query
 “ SELECT ?nextURI
 WHERE
 {

 :welcome :visited ?conceptVisits;
 :byuser $CurrentUser;

 :hasseen ?seen .

2
 http://www.w3.org/TR/rdf-sparql-query/

3
 http://www.w3.org/RDF/

D1.2b - Resource Selector Implementation (v1.1), 20-01-2010

Resource Selector Implementation Page 12 (12)

 :welcome :haspage ?page
 :hasurl ?nextURI;
 :advancedUser ?value.

 FILTER (?seen == ?value)
 }”
]

In this query we again look at the concept “:welcome” for user “$CurrentUser”, but now instead of a counter
we consider a boolean property “:hasseen” that records if the user has already seen the page or not.
Moreover the “:welcome” concept has one or more properties “:haspage” and for such a page a URI for that
page is defined (via “: hasurl”) and a boolean attribute “:advancedUser” is defined which specifies if this page
is for the advanced user (?value==true) or not (?value==false). We define :advancedUser as a user who has
already seen the concept. We now select a page that is advanced or not by demanding only pages with an
“:advancedUser” level that equals the “:hasseen” property for “?conceptVisits”. This means that if the user
has seen the concept he gets a page that is labelled for the advanced user, or if the user did not see the
concept yet he gets a page that is labelled not being for an advanced user.

Note that this query can yield several results (depending on the domain model), e.g. if there are more than
one pages labelled for the advanced user. If this is so, there is no guarantee which of those URIs will exactly
be used by the engine. If this is not the desired behaviour the datamodel and queries should be designed
such that the query yields exactly one result.

As shown there are several equivalent possibilities in which the same construct can be modelled in GAL. Of
course, during implementation specific choices needs to be made how to translate CAM / GALE structures
into GAL constructs. Fortunately, which choices are made is not relevant for the GAL language and
equivalent choices will lead to the same behaviour in the Adaptive Engine(s).

References

1. De Bra, P., Houben, G.J., Wu, H., AHAM: A Dexter-based Reference Model for Adaptive
Hypermedia, Proceedings of the ACM Conference on Hypertext and Hypermedia, pp. 147-156,
Darmstadt, Germany, 1999.

2. De Bra, P., Smits, D., Stash, N., The Design of AHA!, Proceedings of the ACM Hypertext
Conference, Odense, Denmark, August 23-25, 2006 pp. 133, and http://aha.win.tue.nl/ahadesign/,
2006.

3. Brusilovsky, P. Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted
Interaction, 6 (2-3), pp. 87-129, 1996.

4. Brusilovsky, P. Adaptive hypermedia. User Modeling and User Adapted Interaction, Ten Year
Anniversary Issue (Alfred Kobsa, ed.) 11 (1/2), pp. 87-110, 2001.

5. Brusilovsky, P., Eklund, J., Schwarz, E., Web-based education for all: A tool for developing adaptive
courseware. Computer Networks and ISDN Systems (Proceedings of the 7th Int. World Wide Web
Conference, 30 (1-7), pp. 291-300, 1998.

6. Knutov, E., De Bra, P., Pechenizkiy, M., AH 12 years later: a comprehensive survey of adaptive
hypermedia methods and techniques. New Review of Hypermedia and Multimedia, 15(1), pp. 5-38,
2009.

