
D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 1 (9)

GRAPPLE
D1.2a Version: 1.0

Resource Selector Specification

Document Type Deliverable

Editor(s): Kees van der Sluijs (TUE)

Author(s): Paul De Bra (TUE), David Smits (TUE), Kees van der Sluijs (TUE), Evgeny
Knutov (TUE)

Internal Reviews Andrea Lorenzon (GILABS), Dominik Heckmann (DFKI)

Work Package: 1

Due Date: 01-02-2009

Version: 1.0

Version Date: 25-02-2009

Total number of pages: 9

Abstract: This deliverable describes the “translation” from concepts to resources in GRAPPLE. Access to
information, activities, tasks, etc. is done through concepts. Each concept may be linked with a number of
concrete resources (files, pages, queries to repositories or anything else that can be addressed through a
URI). Based on user model properties a runtime selection of a resource or query is made.

Keyword list: Resource Selector, GAL, GALE

D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 2 (9)

Summary

This deliverable describes the “translation” from concepts to resources in GRAPPLE. Access to information,
activities, tasks, etc. is done through concepts. Each concept may be linked with a number of concrete
resources (files, pages, queries to repositories or anything else that can be addressed through a URI).
Based on user model properties a runtime selection of a resource or query is made. This is what the AHAM
reference model [1] calls the page selector. In particular we show how this page selection process is
executed by the GALE engine (described in deliverable D1.3a) and how it can be specified in the GAL
language (described in deliverable D1.1a).

Authors

Person Email Partner code

Paul De Bra debra@win.tue.nl TUE

David Smits d.smits@tue.nl TUE

Evgeny Knutov e.knutov@tue.nl TUE

Kees van der Sluijs k.a.m.sluijs@tue.nl TUE

D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 3 (9)

Table of Contents

SUMMARY .. 2

AUTHORS ... 2

TABLE OF CONTENTS .. 3

TABLES AND FIGURES... 3

LIST OF ACRONYMS AND ABBREVIATIONS ... 3

1 INTRODUCTION .. 4

2 CONCEPTS AND RESOURCES IN GRAPPLE .. 5

2.1 Concept to Resource translation in GALE ... 5

2.2 Concept to Resource translation in GAL ... 7

REFERENCES .. 9

Tables and Figures

List of Figures

Figure 1: Taxonomy of adaptation techniques in hypermedia ... 4

Figure 2: Resource Selection in AHA! 3’s Graph Author ... 6

List of Acronyms and Abbreviations

AHA! (or AHA) Adaptive Hypermedia Architecture (also used as prefix for other terms)

ALE Adaptive Learning Environment

CAM Conceptual Adaptation Model

AM Adaptation Model

DM Domain Model (this includes the Adaptation Model)

GRAPPLE Generic Responsive Adaptive Personalized Learning Environment

LMS Learning Management System

SOAP Simple Object Access Protocol

UM User Model

URI Uniform Resource Identifier

URL Uniform Resource Locator

D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 4 (9)

1 Introduction

Adaptive systems that deliver information (this includes adaptive hypermedia, recommender systems,
information filtering, simulations, and to some extent even gaming) present their information in units at a
time. Typical units are pages or objects (to be included in pages). The design of an adaptive application
however is done in terms of (abstract) concepts, not in concrete information fragments. This deliverable
explains how in GRAPPLE we make the link between concepts and resources (which can be pages,
fragments, objects, or any other information unit that can be addressed or retrieved by querying some
repository).

Figure 1 below shows a recent taxonomy of adaptation techniques in hypermedia, which is an update and
extension of the taxonomies presented in [3] and [4]. The major difference between the new and old
taxonomies is that “cosmetic” adaptation techniques (adaptive presentation) have been separated from
techniques that really change the information content and the navigation possibilities. Connecting concepts
with resources is only concerned with the “real” adaptation, thus the content adaptation and adaptive
navigation techniques shown in the figure. (In the figure different types of arrows are used just to improve
readability.)

Content

Adaptation

Techniques

(Canned Text,

Multimedia)

Inserting/removing

fragments

Altering Fragments

Stretchtext

Sorting

Fragments

Dimming

Fragments

Zoom/Scale

Adaptive

Navigation

Techniques

Guidance

Link Sorting/

Ordering

Link Hiding

Link Annotation

Combinatorial

techniques

Link Generation

Direct (Local) Guidance

Global Guidance

Hiding

Removal

Disabling

Contextual links

Non-contextual links

Contents, Index links

Local and Global Maps

Adaptive

Presentation

Techniques
Layout

Partitioning/zooming

Rearrangement

Fitting in a template

Anchor adaptation

Destination adaptation

URL adaptation

Conventional Scaling/

Zooming

Fisheye view

Fragment

summarization

Figure 1: Taxonomy of adaptation techniques in hypermedia

D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 5 (9)

The GRAPPLE Adaptive Learning Environment (or GALE) must “find” content for information that is
addressed as concepts. This can happen in two ways: for conditionally inserting fragments in pages, and for
retrieving link destinations. The inserting/removing fragments and the altering fragments techniques require
finding resources (unless the fragments appear in-line on a page), and the link generation, and guidance
techniques may also require a concrete implementation technique that we call destination adaptation (see
Figure 1). The “translation” from concept to resource (or actually the location or URI of a resource) can be as
simple as one-to-one, and can be as complex as posing a query (over the domain and user model) in order
to compute or select the most appropriate resource. (Although often the URI may be an actual location and
thus considered to be a URL we shall consistently use the term URI in this deliverable.)

2 Concepts and Resources in GRAPPLE

There are different possible approaches to linking concepts and resources in adaptive (educational)
hypermedia systems:

• In Interbook [5] links on pages or in a navigation menu refer to content: They link to a fixed section or
page of a course. On the server each page is linked to a number of concepts the page teaches
something about. Links to concepts are also possible. Interbook typically shows a list of background
concepts (prerequisites) and a list of outcome concepts (the concepts the page teaches something
about). Accessing a concept can also be done through a “teach me” button that will generate a list of
pages that (together) provide all the required prerequisite knowledge. Likewise in AHA! version 3 [2]
links can refer to concepts or to resources. Internally AHA! would first translate the URI of a resource
back to the name of the concept and then treat the link as a link to the concept.

• Another approach is to query a learning object repository (or a distributed federation of learning
object repositories, or any other type of database). Such a query results in either a concrete page to
be presented or in a possibly ranked set of results, linking to actual content (pages).

• A third possibility is to have links always refer to a concept, and to let the adaptation engine calculate
which resource to retrieve and present. This follows the approach of the AHAM reference model [1]:
accessing content is performed in two stages: a page selector translates concepts into identities of
resources, and an accessor function retrieves the actual content. It is this approach we follow in
GRAPPLE’s adaptation engine GALE because it is most general. It allows page selection to be as
simple as a one-to-one mapping between a concept and a page (in which case it could also be
reversed to allow direct references to pages) or as complicated as the function of a search engine
returning a ranked list of references to pages.

A key element in the GRAPPLE approach is that we make use of URIs to refer to both concepts and content.
When creating a domain model an author has the option of uniquely identifying each piece of authored
content with a concept. Selecting the appropriate content to be presented for a (higher level) concept can
then completely be determined by the adaptation engine, and completely controlled by the author when
designing the domain model and the conceptual adaptation (represented in the Conceptual Adaptation
Model or CAM). However, it is equally possible to use a URI to express a query, so that when a concept is
associated with a query it is up to the database or repository that handles the query to determine what
content to return. In this case the author is only responsible for writing the query, not for how to answer it.
Because both the input and the output of the page selection process consists of URIs it is possible to create
a multi-stage process where the selection returns URIs that again refer to concepts so that the next page
selection can be performed that may return the URI of a page or again of a concept, …

In Section 2.1 we describe how the GRAPPLE Adaptive Learning Environment GALE (see also deliverable
D1.3a) performs page selection. Section 2.2 shows how these constructs can be expressed in the higher-
level GRAPPLE Adaptation Language GAL (defined in deliverable D1.1a).

2.1 Concept to Resource translation in GALE

The translation of concepts to resources in GALE is inspired by AHA! version 3, but is much more generic. In
AHA! every concept could be associated with a list of condition-URI pairs. The figure below shows a screen
shot of the GUI element in AHA!’s Graph Author tool to define such condition-URI pairs.

D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 6 (9)

Figure 2: Resource Selection in AHA! 3’s Graph Author

The condition (entered in the „Expression“ field) is associated with a value for an attribute „showability“.
When the concept is accessed the expressions are evaluated to set the correct value of „showability“, which
is then used to select the appropriate URI. The Graph Author shields this implementation detail from the
authors. An author simply writes condition-URI pairs.

In GALE we will keep the authoring simplicity through the authoring tools, while at the same time creating a
more generic implementation. To this end the GALE engine uses the following approach:

• Requests for information that need to result in user model updates must be done through concepts.
(It is possible to request resources directly, as done for instance to include fixed presentation
elements like images, headers and footers, but these requests do not trigger any UM updates.
Resources that are requested (and included) directly can still be adaptive, as may be done in a
header for instance.)

• Each concept has a „resource“ attribute that holds the URI currently associated with the concept (for
the current user). When there is a one-to-one relationship between a concept and resource this is all
that is needed.

• Like for any other attribute of GALE concepts the “resource” attribute also has a “default” expression.
Default expressions can either indicate a value or an expression to be evaluated to initialize the
attribute, or can be used to compute the attribute value each time it is needed, in case of volatile
attributes (of which the value is not stored in UM). The syntax of such expressions is explained in
deliverable D1.3a. GALE expressions are Java expressions in which one can refer to user model
attribute values.

As an example, consider a course that is called “tutorial”. It has a concept called “welcome” that can refer to
two different pages: one for first-time visitors (say “readme.xhtml”) and one for repeat visitors (say
“welcome.xhtml). The “default” expression for tutorial.welcome should then be something like:

(${visited)==0?”aha:/tutorial/readme.xhtml”:”aha:/tutorial/welcome.xhtml”)

In this example we see the reference to ${visited} which results in the value of the “visited” attribute of
the current concept (for the current user). We assume here that the adaptation rules will ensure that “visited”
represents the number of previous visits to the concept. If the concept has not been visited before the result
is that the readme.xhtml file will be displayed, otherwise the welcome.xhtml file will be displayed.

Any Java expression can be used here, including expressions with method calls. The expression must return
a string that can be interpreted as a URI. It is thus possible to extend GALE with modules that perform
complex computations over the user model in order to decide which URI to associate with a concept. (This
can be useful for some applications that wish to perform a page selection process that cannot be described
in simple terms through the authoring tools that are currently being designed for GRAPPLE, or that cannot
be expressed in the GAL language (of deliverable D1.2a)

After the URI of the resource has been determined the GALE engine can start its real work (retrieving the
resource, updating the user model and adapting the page). The retrieved and adapted resource is eventually
returned to the browser. For the browser it thus looks as if the presented content is a page with as URI the

D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 7 (9)

requested concept. The browser is never passed the actual location (URI) of the page that is presented, only
the concept(s). As a result, on the page all relative links to concepts simply work without having to do any
manipulations to the URIs.

Because in GALE all requests refer to concepts using URIs and because the requests for content are
initiated from GALE using URIs it is possible to have the computed URI refer to concepts as well as pages. It
is thus possible to have a concept that refers to a chapter-concept associated with a list section-concepts
from which the engine conditionally selects one. When the section is requested this is a new (HTTP) request
to GALE that will call up the default expression associated with the section. This may result in selecting a
page from a list of pages associated with the section. It is thus possible to traverse down the concept
hierarchy, or to implement a „next“ button (or a „teach me“ button) that invokes a decision process to
determine which page to show next. Note however that each of these requests for traversing the concept
hierarchy is an “access event” and thus may cause UM updates.

Likewise an author can write pages (of a course) that contain conditionally included objects. The process for
deciding which content to show for an object (that refers to a concept) is identical to the process for deciding
on link destinations. Conditionally included objects (e.g. using the <object> tag in xhtml) cause the browser
to generate HTTP requests and thus generate an event that causes UM updates.

Because GALE allows the use of arbitrary Java expressions (including method calls) it is possible to
implement the most complex decision processes for linking concepts to resources. However, in practice,
using GRAPPLE’s authoring tools and intermediate adaptation language GAL the selection will consist of
simple expressions that are easy for authors to understand and create.

2.2 Concept to Resource translation in GAL

The GAL language is an intermediate language between the CAM and GALE. GAL is designed to provide
the basic primitives to specify adaptive navigation. Authoring environments that specify adaptive navigable
courses should be able to generate a GAL instance, which in its turn should be converted into adaptation
rules that can be implemented by most adaptive engines. GAL is described in detail in deliverable D1.1a.

There is no specific construct for resource translation in GAL, but it can be simply done with typical GAL
primitives. GAL Attributes represent literal values shown to the user. This can be text (fragments), but it can
also be any URI-referable media types, e.g. pictures, videos or html pages. For concept to resource
translation, typically the URI-referable media types are of importance. For determining which value (URI in
the case of resource translation) an attribute should represent we can use a query which can refer both to
the domain and user model. Moreover, we can use conditions to choose between different query values.

Let’s look at the previous example in Section 2.1. Consider the course that is called tutorial. It has a concept
called “welcome” that can refer to two different pages: one for first-time visitors (say “readme.xhtml”) and one
for repeat visitors (say “welcome.xhtml). In GAL terms we could write this as a Unit that contains the
following attribute:

 :hasAttribute [
 :if [:query
 “ SELECT ?conceptVisits
 WHERE
 {

 :welcome :visited ?conceptVisits;
 :byuser $CurrentUser;

 :amount ?visits .
 FILTER (?visits > 0)
 }”

] ;
:then[:value “aha:/tutorial/welcome.xhtml”] ;
:else[:value “aha:/tutorial/readme.xhtml”]

]

In this example we see an attribute (:hasAttribute) that has a condition (if-then-else). In the “:if” clause we
defined a query that queries the domain and user model. In this example we used the SPARQL

1
 syntax for

1
 http://www.w3.org/TR/rdf-sparql-query/

D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 8 (9)

the query, for now assuming that the domain and user modelled are expressed in RDF
2
. Note that this is just

exemplary, other query formalisms and corresponding data models can be used as well in GAL.

The query looks at the concept “:welcome” which has a property “:visited” which points to a node denoted by
the variable “?conceptVisits”. This node is a concept to express the number of visits of concept “welcome” by
the current user. We explicitly model here that the user for which we inspect the number of visits, i.e. the
current user, must be $CurrentUser. The use of the $-sign indicates that this is a GAL variable. Note that the
$-sign is not part of the SPARQL-language but is used by the GAL interpreter to substitute the value of the
variable. Also note that “$CurrentUser” and “$CurrentApplication” are reserved variables that always exist in
every GAL Unit. The variable “?conceptVisits” points to a node which should have a property “:amount”
which should indicate the number of visits of the particular concept for this particular user. The variable
“?visits” points to the number of visits by the user. In the FILTER clause it is then specified that we only
include “?conceptVisits” if the number of visits is more than 0, so in case the user already visited the concept
before.

If this query yields any results (i.e. user “$CurrentUser” did already visit concept “:welcome”) we execute the
“:then” clause and show the user the “welcome.xhtml” page. If user “$CurrentUser” is new, the else clause is
executed and the user is shown the “readme.xhtml” page.

We could also use an example in which the resource can be directly found in the domain model, e.g.:

:hasAttribute [
 :query
 “ SELECT ?nextURI
 WHERE
 {

 :welcome :visited ?conceptVisits;
 :byuser $CurrentUser;

 :hasseen ?seen .
 :welcome :haspage ?page
 :hasurl ?nextURI;
 :advancedUser ?value.

 FILTER (?seen == ?value)
 }”
]

In this query we again look at the concept “:welcome” for user “$CurrentUser”, but now instead of a counter
we consider a boolean property “:hasseen” that records if the user has already seen the page or not.
Moreover the “:welcome” concept has one or more properties “:haspage” and for such a page a URI for that
page is defined (via “: hasurl”) and a boolean attribute “:advancedUser” is defined which specifies if this page
is for the advanced user (?value==true) or not (?value==false). We define :advancedUser as a user who has
already seen the concept. We now select a page that is advanced or not by demanding only pages with an
“:advancedUser” level that equals the “:hasseen” property for “?conceptVisits”. This means that if the user
has seen the concept he gets a page that is labelled for the advanced user, or if the user did not see the
concept yet he gets a page that is labelled not being for an advanced user.

Note that this query can yield several results (depending on the domain model), e.g. if there are more than
one pages labelled for the advanced user. If this is so, there is no guarantee which of those URIs will exactly
be used by the engine. If this is not the desired behaviour the datamodel and queries should be designed
such that the query yields exactly one result.

As shown there are several equivalent possibilities in which the same construct can be modelled in GAL. Of
course, during implementation specific choices needs to be made how to translate CAM structures into GAL
constructs. Fortunately, which choices are made is not relevant for the GAL language and equivalent choices
will lead to the same behaviour in the Adaptive Engine(s).

2
 http://www.w3.org/RDF/

D1.2a - Resource Selector Specification (v1.0), 25-02-2009

Resource Selector Specification Page 9 (9)

References

1. De Bra, P., Houben, G.J., Wu, H., AHAM: A Dexter-based Reference Model for Adaptive
Hypermedia, Proceedings of the ACM Conference on Hypertext and Hypermedia, pp. 147-156,
Darmstadt, Germany, 1999.

2. De Bra, P., Smits, D., Stash, N., The Design of AHA!, Proceedings of the ACM Hypertext
Conference, Odense, Denmark, August 23-25, 2006 pp. 133, and http://aha.win.tue.nl/ahadesign/,
2006.

3. Brusilovsky, P. Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted
Interaction, 6 (2-3), pp. 87-129, 1996.

4. Brusilovsky, P. Adaptive hypermedia. User Modeling and User Adapted Interaction, Ten Year
Anniversary Issue (Alfred Kobsa, ed.) 11 (1/2), pp. 87-110, 2001.

5. Brusilovsky, P., Eklund, J., Schwarz, E., Web-based education for all: A tool for developing adaptive
courseware. Computer Networks and ISDN Systems (Proceedings of the 7th Int. World Wide Web
Conference, 30 (1-7), pp. 291-300, 1998.

